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Abstract

In spite of great advances in the theory and applications of magnetic resonance in the past 50 years, some basic questions in spin
physics have not yet been answered. In the absence of relaxation losses, what is the maximum amount of coherence that can be
transferred between coupled spins under general coupling tensors in a given time and how can this be realized experimentally? Since
transfer of coherence between spins forms the basis for multidimensional experiments in NMR spectroscopy, the answers to these
questions are of both practical and theoretical interest. Computing the physical limits of coherence transfer involves characterizing
all unitary evolutions that can be synthesized in a given time. Here we derive these limits and show how they can be achieved
experimentally.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Determining how close a quantum mechanical system
can be driven from a given initial state to a desired target
state in a specified amount of time is an important prac-
tical problem. This problem arises in the areas of coher-
ent spectroscopy and control of quantum systems where
one actively manipulates quantum dynamics through
tailored electromagnetic fields. However, in most appli-
cations, external controls alone are not sufficient to
bring the system to a desired target state. Evolution un-
der the internal Hamiltonian is essential to move be-
tween quantum mechanical states of interest. For
example, in NMR spectroscopy, appropriate combina-
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tions of external excitation through radio-frequency
(rf) pulses and evolution under couplings between nucle-
ar spins is used to steer a spin system to a target state,
e.g., to transfer coherence from one spin to another.
The necessity of having the spin system evolve under
its internal Hamiltonian puts physical limits on the min-
imum time it takes to transfer coherence between cou-
pled spins and on the maximum coherence that can be
transferred in a specified time. Minimizing this time
for coherence transfer does not necessarily minimize
relaxation losses [25,27]. However, in the absence of a
detailed knowledge of relaxation rates and mechanisms,
reducing relaxation losses by finding the shortest possi-
ble pulse sequence is a practical approach.

Until now, the limits of coherence transfer between
coupled spins in a specified time were unknown. In this
paper, we solve this problem for general coupling ten-
sors and find optimal pulse sequences for achieving opti-
mal coherence transfer. This problem is solved under the
assumption that the coupled spins under consideration
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can be selectively manipulated at rates faster than the
coupling evolution. To compute these limits and the
optimal pulse sequences, we make use of an explicit
characterization of the set of all unitary propagators
that can be synthesized in a given time [1,2]. We also
provide experimental data which shows how these meth-
ods can be used to improve sensitivity of current NMR
experiments when the time for coherent evolution is re-
stricted. Finally, we discuss how these methods might be
generalized to larger spin systems and other applications
involving control of quantum dynamics.
2. Theory

We consider a pair of coupled spins, where the cou-
pling Hamiltonian Hc has the form

Hc ¼ 2pCðl1IxSx þ l2IySy þ l3IzSzÞ; ð1Þ
where |l3| P |l2| P |l1|.

Note that the above form of the coupling Hamilto-
nian is completely general as any coupling term of the
form

Hc ¼ 2p
X
a;b

IaCabSb ¼ 2p I C S

with arbitrary real elements Cab can be transformed to
the form given in Eq. (1) by local unitary transforma-
tions on the two spins [2]. By local unitary transforma-
tions we mean unitary evolutions produced by spin
selective excitations.

To see this, observe that by singular value decomposi-

tion of the general coupling tensor C, we can choose
three-dimensional rotations (with possibly negative
determinant) such thatH1CH2 is diagonal with non-neg-
ative entries. By local unitary transformations, we can
transform the coupling tensor Cfi UCV, where U,V
are three-dimensional rotations with positive determi-
nant, reflecting rotations on spin I and S, respectively.
Now U and V can be chosen so that

UCV ¼ C

l1 0 0

0 l2 0

0 0 l3

2
64

3
75;

where |l3| P |l2| P |l1| and li are either all positive or
all negative (not both).

We assume that the two spins under consideration can
be selectively manipulated at rates faster than the cou-
pling evolution, which is always possible if the frequency
difference between the spins is much larger than the
strength of coupling Hamiltonian. This allows us to pro-
duce any local unitary transformation in a time during
which there is negligible evolution under the coupling
Hamiltonian. Under these assumptions, the following
theorem completely characterizes the unitary transforma-
tions that can be achieved in any given time t [1,2].
Theorem 1. [1,2] Let Hc ¼ 2pCðl1IxSx þ l2IySyþ
l3IzSzÞ be the couplingHamiltonian for a system consisting

of two spins 1/2.Any unitary transformationU on two spins

can be represented as U = K1AK2, where K1 and K2 are

local unitary transformations and A is a non-local unitary

transformation of the form exp{�i (axIxSx + ayIySy +
azIzSz)}. All unitary transformations U (t) that can be

synthesized in time t have the form

UðtÞ ¼ K1 expf�i2pCtðaIxSx þ bIySy þ cI zSzÞgK2: ð2Þ

Here (a,b,c) lies in the convex cone generated by vec-
tors (l1,l2,l3), (l1,�l2,�l3), (�l1,�l2,l3), and
(�l1,l2,�l3) and their various permutations, e.g.,
(l1,l3,l2) is a permutation of (l1,l2,l3). K1 and K2

are arbitrary local unitary transformations. A vector x

belongs to the cone of vectors {yi} if x =
P

iaiyi, where
ai P 0 and

P
iai 6 1.

It is straightforward to see that any unitary transfor-
mation in Eq. (2) can be achieved in time t. Starting
from the Hamiltonian of the form l1IxSx + l2IySy +
l3IzSz, by a 90�x rotation on both spins, we can prepare
the effective Hamiltonian l1IxSx + l3IySy + l2IzSz.
Similarly, by a selective 180�x rotation on one of the
spins, we can also prepare the effective Hamiltonian
l1Ix Sx � l2IySy � l3IzSz. Now it is clear that by a series
of such double and selective rotations any Hamiltonian
of the form pIxSx + qIySy + rIzSz can be synthesized,
where (p,q, r) is one of (l1,l2,l3), (l1,�l2,�l3),
(�l1,�l2,�l3), (�l1,l2,�l3) or their permutations.
Since all these Hamiltonians commute, we can, by con-
catenation of evolution under these transformed Hamil-
tonians, synthesize an average Hamiltonian aIxSx +
bIySy + cIzSz, where (a,b,c) lies in the specified convex
cone. Since local unitary transformations are assumed
to take negligible time to produce, it is now clear that
any U as defined in Eq. (2) can be synthesized. Using
convexity results from matrix analysis, it can be shown
that these are the only unitary evolutions that can be
produced in time t [2].

We now use this theorem to compute the maximum
coherence that can be transferred between coupled spins
in a specified time t. Let the initial density operator
terms of interest be q (0) and denote the density operator
at time t by q (t) = U (t)q (0)U (t)�. The efficiency of
transfer to a target operator F at time t is defined as [3]
gðtÞ ¼ jtrðF yqðtÞÞj
kF k kqð0Þk : ð3Þ

Result 1: Given the coupling Hamiltonian Hc ¼
2pCðl1IxSx þ l2IySy þ l3IzSzÞ, the maximum efficiency
g* (t) of the coherence transfer in time t for t 6 tmin,
and the minimum time tmin for complete transfer for
important experiments are summarized in Table 1.



Table 1
Maximum transfer efficiency g* (t) and minimum time tmin for complete transfer

Transfer g*(t) (t 6 tmin) t�1
min

Ix fi Sx sin2ðp2Cðjl3j þ jl2jÞtÞ C (|l3| + |l2|)
I� fi S� sin (pCa) sin (pCb) 2

3Cðjl3j þ jl2j þ jl1jÞ
Ix fi 2IzSx sin (pC|l3|t) 2C|l3|
I� fi 2IzS

� maxx sinðp2Cfjl3j þ jl2j � jl1j þ xgtÞ cosðpCtxÞ C (|l3| + |l2| � |l1|)
IxSb fi IbSx sinðp2Cðjl3j þ jl2jÞtÞ C (|l3| + |l2|)
I�Sb fi IbS

� sinðp2Cðjl3j þ jl2jÞtÞ C (|l3| + |l2|)

Note. I� = Ix � iIy and Ib ¼ 1
2 � Iz. For the transfer I� fi S�, the optimal values of a and b are completely characterized by the two conditions

a + 2b = (|l3| + |l2| + |l1|) t and tan(pCa) = 2tan(pCb).
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The proof of the optimal transfer efficiencies g* (t)
and minimum times tmin summarized in Table 1 uses
the characterization of all the unitary transformations
that can be achieved in a given time t as characterized
in Eq. (2). For details see Appendix A. Here, we illus-
trate the basic ideas involved in proving the above rela-
tions by considering the first example (Ix fi Sx).

For this case, Eq. (3) reduces to

gðtÞ ¼ jtrfSxUðtÞIxU yðtÞgj ð4Þ
as iIxi = iSxi = 1. We need to find the unitary propaga-
tor U (t) that maximizes g (t). As explained before, it
takes negligible time to synthesize the local unitary
transformations K1 and K2 in Eq. (2). Let K2IxK

y
2 ¼

m1Ix þ m2Iy þ m3Iz and Ky
1SxK1 ¼ n1Sx þ n2Sy þ n3Sz,

where
P

im
2
i ¼ 1 and

P
jn

2
j ¼ 1. Eq. (4) then can be writ-

ten as

gðtÞ ¼ m1n1 sinðpCbtÞ sinðpCctÞ þ m2n2 sinðpCatÞ
� sinðpCctÞ þ m3n3 sinðpCatÞ sinðpCbtÞ; ð5Þ

where (a,b,c) lies in the convex cone generated by vec-
tors (l1,l2,l3), (l1,�l2,�l3), (�l1,�l2,l3), (�l1,l2,
�l3), and their various permutations. If b + c is fixed
then sin (pCbt) sin (pCct) achieves its maximum value
at b = c. Given the restrictions on (a,b,c) as described
above, this maximum value is achieved when
b + c = |l2| + |l3| and the maximum value is sin2ðp

2

Cðjl3j þ jl2jÞtÞ (cf. red curves in Fig. 1). Similarly the
maximum possible value of sin (pCat) sin (pCct) and
sin (pCat) sin (pCbt) is also sin2ðp

2
Cðjl3j þ jl2jÞtÞ. There-

fore , Eq. (5) achieves its maximum for m1 = n1 = 1 and
for b ¼ c ¼ 1

2
ðjl3j þ jl2jÞ. Thus, the largest value of Eq.

(5) is 1 and is achieved at tmin = {C (|l3| + |l2|)}
�1. The

initial coupling Hamiltonian Hc can be transformed by
selective 180� rotations on the spins to either
2pC (|l1|IxSx + |l2|IySy + |l3|IzSz) or �2pC (|l1|IxSx +
|l2|IySy + |l3|IzSz). The maximum efficiency can be
achieved by evolution under the Hamiltonian
±2pC (|l1|IxSx + |l2|IySy + |l3|IzSz) for a duration t/2
followed by evolution under ±2pC(|l1|IxSx + |l3|IySy +
|l2|IzSz) for another period t/2, as depicted in Figs. 2A
and A 0.
The plot of the maximum achievable efficiency g*

versus the mixing time t also gives us the minimum
time it takes to achieve a desired coherence transfer
efficiency. We will refer to this plot as time-optimal
pulse (TOP) curve. In Table 1, complete characteriza-
tions of TOP curves g* (t) are given for widely used
coherence transfer elements, such as Cartesian in-
phase to in-phase transfer (Ix fi Sx) as in refocused
INEPT [4], coherence-order-selective in-phase to in-
phase transfer (I� fi S�) as in sensitivity enhanced
ICOS-CT experiments [5], Cartesian in-phase to anti-
phase transfer (Ix fi 2IzSx) as in standard INEPT [6],
coherence-order-selective in-phase to antiphase transfer
(I� fi 2IzS

�) as in sensitivity enhanced COS-CT [7],
and line-selective to line-selective transfer IxSb fi IbSx

and I�Sb fi IbS
� as in TROSY [8,9]. Note that by fast

local unitary transformations, Ix can be rapidly flipped
to Iy or Iz, I� = Ix � iIy can be transformed to
I+ = Ix + iIy, and Ib ¼ 1

2
� Iz can be transformed to

Ia ¼ 1
2
þ Iz and vice versa. Hence, each of the specific

transfers stated in Table represents a whole class of lo-
cally equivalent transfers with the same TOP curves
g* (t) and the same minimum time tmin to achieve com-
plete transfer.

Examples of TOP curves are presented in Fig. 1 for
four characteristic coupling tensors. Fig. 1A corresponds
to the case of longitudinal, Ising-type coupling with
(l1,l2,l3) = (0,0,1), which is characteristic for hetero-
nuclear experiments [10,11]. Fig. 1B shows the case of
planar coupling [12], also known as XY model [13] with
(l1,l2,l3) = (0,1,1). Fig. 1C represents the generic case
of homonuclear J coupling in isotropic solutions, also
known as Heisenberg coupling with (l1,l2,l3) =
(1,1,1). Finally, Fig. 1D corresponds to the case of dipo-
lar coupling with (l1,l2,l3) = (�0.5,�0.5,1), which is
the dominant homonuclear coupling term in solid state
NMR and also important in anisotropic solutions [14].
For example, in the case of the Cartesian transfer
Ix fi Sx under dipolar coupling (red TOP curve in Fig.
1D), the minimum time to achieve full transfer is
2/(3C) = 0.66/C. In contrast, conventional pulse
sequences [4,15] based solely on non-selective rf pulses
require a 50% longer transfer time t.



Fig. 1. Graphical representations of the TOP curves g* (t) for characteristic coherence transfers under (A) longitudinal (Ising) coupling with
(l1,l2,l3) = (0,0,1), (B) planar coupling with (l1,l2,l3) = (0,1,1), (C) isotropic (Heisenberg) coupling with (l1,l2,l3) = (1,1,1), and (D) dipolar
coupling with (l1,l2,l3) = (�0.5,� 0.5,1). The curves represent the transfers Ix fi Sx (red), I� fi S� (orange), Ix fi 2IzSx (dark blue), I� fi 2IzS

�

(light blue), IxSb fi Ib Sx, and I�Sb fi IbS
� (green). Dark blue curves are overlapping with green curves in (A), (B), and (C), and with the light blue

curve in (B). The dotted vertical lines indicate the minimum times tmin to achieve full transfers.
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From Table 1 it follows that tmin (Ix fi Sx) =
tmin (IxSb fi IbSx) = tmin (I

�Sb fi IbS
�) and

tminðIx ! 2IzSxÞ 6 tminðIx ! SxÞ 6 tminðI� ! 2IzS
�Þ

6 tminðI� ! S�Þ

if |l2| + |l3| P 5|l1| (cf. Figs. 1A and B), else (cf. Fig. 1C
and D)

tminðIx ! 2IzSxÞ 6 tminðIx ! SxÞ 6 tminðI� ! S�Þ
6 tminðI� ! 2I zS

�Þ:

In Figs. 1C and D, the characteristic shape of the
light blue TOP curves for the transfer I� fi 2IzS

� results
from the need to refocus the IzSz part of the coupling
term, for details see Appendix A. Schematic representa-
tion of time optimal pulse sequences achieving the trans-
fer limits are shown in Fig. 2.
3. Experimental

For practical NMR applications, the required selec-
tive manipulations of spins are most straightforward to
implement in heteronuclear spin systems, which implies
the weak coupling limit (Ising coupling) [10]. For homo-
nuclear spin systems with general coupling tensors, rapid
selective manipulation of spins is possible if the reso-
nance frequencies of the spins of interest are well sepa-
rated. The physical limits of coherence transfer
efficiency in a given time will motivate the development
of relatively straightforward pulse sequence elements
(represented by boxes in Figs. 2A 0–E 0) for suppressing
chemical shifts for given frequency ranges of practical
interest to approach an effective coupling Hamiltonian
of the form ±2pC (|l1|IxSx + |l3|IySy + |l2|IzSz), as re-
quired by the time-optimal pulse sequences (cf. gray
boxes in Figs. 2A 0–E 0).

To experimentally demonstrate an example of a
non-trivial optimal coherence transfer sequence, we
implemented the transfer I� fi S� for an effective Ham-
iltonian of the form given in Eq. (1) with C = 10.8 Hz
and (l1,l2,l3) = (0.03,0.88,0.88). Homonuclear, spins
I and S were represented by the H5 and H6 proton spins
of cytosine in an anisotropic solvent consisting of fila-
mentous Pf1 phage in 90% H2O and 10% D2O [15,16].
The phage concentration was adjusted such that the
residual dipolar coupling constant D between I and S

was the negative of the scalar coupling constant J =
7.2 Hz. At a magnetic field of 14.1 Tesla, the transmitter
frequency was set in the center of the two resonances,
resulting in offset frequencies mI = 459 Hz and mS =
�459 Hz with a free evolution Hamiltonian of the form



Fig. 2. Schematic representation of TOP sequences achieving the physical limit of transfer efficiency g* (t) in a given time t for the transfers Ix fi Sx

(A,A 0), I� fi S� (B,B 0), Ix fi 2IzSx (C,C 0), I� fi 2IzS
� (D,D 0), IxSb fi IbSx, and I�Sb fi IbS

� (E,E 0). (A–E) The sequence of effective coupling
Hamiltonians to be created during the sequence, where the triple in each box represents the prefactors of the bilinear coupling terms 2pCIxSx,
2pCIySy, and 2pCIzSz in a toggling frame, respectively. For simplicity, here it is assumed that the initial coupling HamiltonianHc can be transformed
by selective 180� rotations on the spins to +2pC (|l1|IxSx + |l2|IySy + |l3|IzSz). (A

0–E 0) Schematic pulse sequences, where the gray boxes represent
pulse sequence elements creating the effective Hamiltonian 2pC (|l1|IxSx + |l2|IySy + |l3|IzSz) (or �2pC (|l1|IxSx + |l2|IySy + |l3|IzSz)). The optimal
durations t1, t2, and t3 in B 0 and t1 and t2 in D 0 are specified in Appendix A. Narrow and wide bars represent 90� and 180� pulses, respectively. Solid
bars represent non-selective pulses and open bars represent spin-selective pulses.
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H ¼ 2pmI ðIx � SxÞ þ 2pC ðIySy þ IzSzÞ
with C = J � D/2 = 10.8 Hz, where we have labeled the
axes such that the convention |l3| P |l2|P |l1| is ful-
filled (cf. Eq. (1)). To eliminate the offset terms, we used
a modified Carr–Purcell sequence [17–19] with a rf
amplitude �cB1/(2p) of 31.2 kHz and delays D of
264 ls which results in an effective Hamiltonian

Heff ¼ 2pC ð0:03 IxSx þ 0:88 IySy þ 0:88 I zSzÞ: ð6Þ
Given this effective Hamiltonian, the optimal pulse

sequence for the transfer I� fi S� was implemented.
According to Table 1, the minimum time to achieve full
transfer (g = 1) is given by tmin = 3{2C (|l3| +
|l2| + |l1|)}

�1 = 77.6 ms and for a given total transfer
time t 6 tmin, the maximum possible transfer efficiency
g* (t) is given by

g�ðtÞ ¼ sinðpCaÞ sinðpCbÞ ð7Þ
(cf. solid curve in Fig. 3A) with (a + 2b)/t = |l3| +
|l2| + |l1| = 1.79 and tan(pCa) = 2tan(pCb).
In the general case where l1 „ l2 „ l3, the optimal
sequence of toggling frame Hamiltonians shown in
Fig. 2B consists of six periods which can be realized
by the pulse sequence given in Fig. 2B 0. In the present
case where l2 = l3, the general sequence of toggling
frame Hamiltonians reduces to only three distinct
periods with ±2pC (|l1|IxSx + |l2|IySy + |l3|IzSz) for
time t1, ±2pC (|l3|IxSx + |l1|IySy + |l2|IzSz) for time
t2, and ±2pC (|l2|IxSx + |l3|IySy + |l1|IzSz) for time t3.
The corresponding pulse sequence can be simplified
to t1 � ð90�zÞ � t2 � ð90��z90

�
yÞ � t3 � ð90��yÞ. Note

that due to the definition of the frame of reference,
such that |l3|P |l2| P |l1| (cf. Eq. (1)), the 90�y and
90�z pulses correspond to 90�x and 90�y pulses in the
usual rotating frame of reference. For any total time
t 6 tmin, the optimal durations t1 = t2 and t3 are deter-
mined uniquely by the conditions t1 + t2 + t3 = t and
tan(pCa) = 2tan(pCb), where a = (|l2| + |l3|) t2 +
|l1|t3 and b = |l1|t2 + (|l2| + |l3|) (t2 + t3)/2 (cf. solid
curves in Fig. 3B and Appendix A).



Fig. 3. (A) Comparison of transfer efficiencies g (T) for the in-phase
coherence-order selective coherence transfer I� fi S�. Solid curve and
filled circles correspond to the theoretical (cf. Eq. (7)) and experimental
transfer efficiency of the optimal pulse sequence for a non-isotropic
effective Hamiltonian of the form Heff ¼ 2p 10:8 Hz (0.03 IxSx + 0.88
IySy + 0.88 IzSz) as a function of the total transfer time t. The dotted
curve and open circles represent the case of isotropic mixing. To take
into account small experimental relaxation losses, the theoretical
curves were multiplied by an exponential damping function exp{�t/
Td} with Td = 1.06 s. (B) Optimal durations t1, t2, and t3 (solid curves)
and the durations t1 = t2 = t3 = t/3 of an isotropic mixing sequence
(dotted line). The filled and open circles correspond to actual mixing
periods ti used in the experiments, where the time resolution was
limited to multiples of 1.12 ms, corresponding to a single XY-4 cycle
[17], i.e., one fourth of complete a complete XY-16 cycle [18].
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To record experimental transfer efficiency curves g (t)
for the transfer I� fi S� in the rotating frame, the initial
density operator qo = Ix was prepared by selectively sat-
urating spin S and by applying a hard 90�y pulse to the
thermal equilibrium spin I polarization. The solvent sig-
nal (H2O) was suppressed by a combination of presatu-
ration and pulsed field gradients. Before application of
the transfer sequence, Ix was dephased by a pulsed field
gradient. After the actual coherence transfer step, a refo-
cusing gradient of opposite sign was applied before the
free induction decay was recorded. As only �1 quantum
coherence is detected by the standard quadrature detec-
tion scheme, the integrated intensity of the S resonance
corresponds to the experimental transfer amplitude for
I� fi S�. Fig. 3A shows the theoretical (solid line) and
experimental (solid circles) transfer efficiency of the opti-
mal pulse sequence as a function of t. For comparison,
the dotted curve and open circles shows the theoretical
and experimental transfer efficiency
gIMðtÞ ¼ sin2ðpCfl1 þ l2 þ l3gt=3Þ

of an isotropic mixing sequence with t1 = t2 = t3 = t/3
[5,20–22] applied to the effective Hamiltonian in Eq.
(6). In the limit of short transfer times, the optimal
mixing sequence provides a gain of more than 11%
compared to isotropic mixing. As the transfer time t

is nearing tmin, the optimal transfer sequence ap-
proaches the isotropic mixing sequence with ti = t/3
(cf. Fig. 3B).
4. Conclusion

If no constraint is placed on the mixing time, the
maximum achievable efficiency and pulse designs for
the transfers considered in this paper are known
[3,23,24]. However, for any specified mixing time t, we
for the first time derive physical limits on the efficiency
of coherence transfer between coupled spins 1/2 under
general coupling tensors. Furthermore, we give shortest
pulse sequences which achieve this maximum efficiency.
The solution of this problem, besides being of funda-
mental interest in magnetic resonance, gives the best
experimental designs for multidimensional NMR exper-
iments where mixing times have to be curtailed due to
relaxation losses. It is important to note that we have
made no attempts in this paper to exploit the structure
of relaxation. In our recent work, we have shown that
in the presence of differential relaxation rates, it is pos-
sible to increase coherence transfer efficiency over one
obtained by just reducing the mixing time [25–27]. How-
ever, in many practical applications, no differential
relaxation exists or limited information about relaxation
is available. With the development of methods which
give unitary bounds on coherence transfer efficiencies
in multiple spin topologies [3,23], it is of interest to ex-
tend the results of this paper to compute the minimum
time and the corresponding pulse sequences to achieve
these bounds in larger spin systems. For example, these
include general InS spin systems (e.g., methylene or
methyl groups in side chains of proteins) and chains of
coupled heteronuclear or homonuclear spins (e.g., in
protein backbone or side chain experiments). The tech-
niques presented in this paper for computing limits of
coherence transfer efficiency by first characterizing the
set of unitary transformations that can be synthesized
in a specified time forms a systematic methodology for
approaching these problems. Furthermore, such a char-
acterization of unitary evolutions is of great significance
in the general area of quantum information processing.
This allows to address problems like characterizing the
difficulty of generating a desired state in coupled spin
topologies or finding the minimum time to transfer an
unknown state completely between two coupled spins
under a given coupling tensor.
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Appendix A

Given the coupling Hamiltonian Hc in Eq. (1), we
can by local rotations on the spins, transform it to either
(not both) 2pC (|l1|IxSx + |l2|IySy + |l3|IzSz) or
�2pC (|l1|IxSx + |l2|IySy + |l3|IzSz). The computations
for maximum achievable efficiency are the same starting
from either of these transformed Hamiltonians. There-
fore, without loss of generality, we will assume, in the
following that the coupling Hamiltonian is

Hc ¼ 2pCðjl1jIxSx þ jl2jIySy þ jl3jI zSzÞ:
1. First we consider the transfer

I� ! S�:

To derive the optimal efficiency for this transfer, we state
two lemmas that we will use in the course of the proof.

Lemma 1.

Let p ¼
1
�i
0

2
4

3
5, R ¼

a1 0 0
0 a2 0
0 0 a3

2
4

3
5, ai P 0 and U,V,

three-dimensional rotation matrices. The maximum value

of ip�URVpi is the sum of the largest two diagonal entries

of R.

Proof. Let

K ¼

ffiffiffiffiffi
a1

p
0 0

0
ffiffiffiffiffi
a2

p
0

0 0
ffiffiffiffiffi
a3

p

2
64

3
75:

By definition R = K�K. Using Cauchy Schwartz
inequality ip�URVpi 6 iKVpi iKUpi. Observe, the maxi-
mum value of iKVpi is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ak þ al

p
, where ak and al are the

two largest diagonal entries of R. Therefore, ip�URV-
pi 6 ak + al.For appropriate choiceofUandV, this upper
bound is achieved (For example, in the case a1 P a2 P a3,
the bound is achieved forU andV identity). h.

Lemma 2. Consider the function f (c,b,a) = sin (Cpct)
sin (Cpbt) + sin (Cpct) sin (Cpat), where c,b,a P 0. For
a fixed value of (c + b + a)t 6 3/(2C), the maximum
value of f (c,b,a) is 2sin (Cpa) sin (Cpb), where

a + 2b = (a + b + c) t and tan (Cpa) = 2tan(Cpb). The

maximum is achieved when a = b.

This is a constrained optimization problem, which
can be solved by introducing the Lagrange multiplier k
and maximizing
Hðc; b; a; kÞ ¼ sinðCpctÞ sinðCpbtÞ þ sinðCpctÞ sinðCpatÞ

þ kðcþ bþ aÞt:
The necessary condition for optimality gives oH

oc ¼ 0 ,
oH
ob ¼ 0, and oH

oa ¼ 0, which imply, respectively, that

pCðcosðCpctÞ sinðCpbtÞ þ cosðCpctÞ sinðCpatÞÞ þ k ¼ 0;

ðA:1Þ
pCðsinðCpctÞ cosðCpbtÞÞ þ k ¼ 0; ðA:2Þ

pCðsinðCpctÞ cosðCpatÞÞ þ k ¼ 0: ðA:3Þ
From Eqs. (A.2) and (A.3), we obtain that either

sin (Cpct) = 0 or cos(Cpbt) = cos (Cpat). The first con-
dition does not give a maxima as it makes f identically
zero. The second condition implies

Cpbt ¼ 2mpþ Cpat: ðA:4Þ
Since b,a P 0 and t (a + b) 6 3/(2C), condition (A.4)

is only satisfied for m = 0. Therefore, a = b. Now substi-
tuting this in (A.1) and using the Eqs. (A.1) and (A.2),
we get the desired result. h

We now seek to maximize the expression
|tr (S+U (t) I�U� (t))|. Let s denote the subspace spanned
by the orthonormal basis {Sx,Sy,Sz} and i denote the
subspace spanned by the orthonormal basis {Ix, Iy, Iz}.
We represent the starting operator 1ffiffi

2
p ðIx � iIyÞ as a col-

umn vector p ¼ 1ffiffi
2

p ½1 � i 0�T in i. The action
I� ! K1I�K

y
1 can then be represented as p fi Vp, where

V is an orthogonal matrix. Similarly the operator

Sþ ¼ ðSxþiSy Þffiffi
2

p is represented as a column vector
1ffiffi
2

p ½1 i 0�T in s. Using the characterization of U (t) =

K1A (t)K2 in Eq. (2), we observe that |tr (S+U (t) I�U�

(t))| can be written as ip�URVpi, where U and V are real
orthogonal matrices and

R¼
sinðCpctÞsinðCpbtÞ 0 0

0 sinðCpctÞsinðCpatÞ 0

0 0 sinðCpatÞsinðCpbtÞ

2
64

3
75;

where a + b + c = (|l1| + |l2| + |l3|) t. Now using Lem-
ma 1 and 2, we obtain that the maximum efficiency is gi-
ven by sin (pCa) sin (pCb), where a + 2b = (|l1| + |l2| +
|l3|) t and

tanðpCaÞ
tanðpCbÞ ¼ 2.

In practice, we can achieve this efficiency by evolving
the Hamiltonian 2pC (|l1|IxSx + |l2|IySy + |l3|IzSz), fol-
lowed by the Hamiltonian 2pC (|l1|IxSx + |l3|IySy +
|l2|IzSz) each for time t1/2. This is followed by evolution
of Hamiltonians 2pC (|l3|IxSx + |l1|IySy + |l2|IzSz),
2pC (|l2|IxSx + |l1|IySy + |l3|IzSz), each of duration t2/
2, followed by 2pC (|l2|IxSx + |l3|IySy + |l1|IzSz),
2pC (|l3|IxSx + |l2|IySy + |l1|IzSz), each of duration t3/
2. Observe that t1 + t2 + t3 = t and for the optimal se-
quence t1 = t2 and tanðpCaÞ

tanðpCbÞ ¼ 2, where a = (|l2| +
|l3|) t2 + |l1|t3 and b = (|l2| + |l3|) (t2 + t3)/2 + |l1|t2.
These three relations determine t1, t2, and t3 uniquely.
See Fig. 2B.

2. Now we consider the transfer

Ix ! 2I zSx:

Observe the efficiency of this transfer is the same as
that of the transfer Ix fi 2IySz, as a local rotation on
spin I and S is sufficient to go between the operators
2IySz and 2IzSx. This local transformation is assumed
to take negligible time. We now compute the unitary
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evolution U (t) that maximizes |tr (2IySzU (t) IxU
� (t))|.

Based on the characterization of U (t) = K1A (t)K2 as
in Eq. (2), consider the case when K2 is identity. In this
case

AðtÞIxAyðtÞ ¼ sinðpCctÞ cosðpCbtÞ 2IySz þ sinðpCctÞ
� sinðpCbtÞ Sx:

The maximum projection of K1AðtÞIxAyðtÞKy
1 onto

2IySz is then sin (pCct) cos (pCbt) and is achieved when
K1 is an identity transformation. This value sin (pCct)
cos (pCbt) is maximized for b = 0 and ct as large as pos-
sible (as long as ct 6 1/(2pC)). From (2), the vector
(a,b,c) lies in the convex cone generated by vectors
(l1,l2,l3), (l1,�l2,�l3), (�l1,�l2,l3), (�l1,l2,�l3)
and their various permutations. Under these constraints
the optimal values of c and b are |l3| and 0, respectively.
The maximum efficiency is sin (pC|l3|t). For the local
unitary transformation K2 other than identity
K2IxK

y
2 ¼ m1Ix þ m2Iy þ m3Iz, where

P
im

2
i ¼ 1. Each of

these single spin operators have the maximum transfer
efficiency of sin (pC|l3|t) to the target state 2IySz by
choice of suitable A (t) and K1 as described above. There
is no gain by having K2 other than identity and we ob-
tain the maximum efficiency when K2 = 1. The maxi-
mum efficiency can be achieved by evolution under the
Hamiltonian 2pC (|l1|IxSx + |l2|IySy + |l3|IzSz) for t/2
amount of time followed by evolution under
2pC (�|l1|IxSx � |l2|IySy + |l3|IzSz) for another t

2
as de-

picted in Fig. 2C.
3. Consider the transfer

I�ffiffiffi
2

p !
ffiffiffi
2

p
IzS

�:

Consider the action of A (t) in Eq. (2) on the operator
I+. We obtain by direct computation that

jtrðIzS�AIþAyÞj ¼ cosðpCtcÞ
2

ðsinðpCtaÞ þ sinðpCtbÞÞ:

We would like to have c = 0 and a and b large,
but we know that (a,b,c) lies in a convex cone as
described in Theorem 1. Under these restrictions then,
cosðpCtcÞ

2
ðsinðpCtaÞ þ sinðpCtbÞÞ is maximized for a = b.

To maximize a and b, we evolve the Hamiltonian
2pC (|l2|IxSx + |l3|IySy + |l1|IzSz) for

t1
2
units of time fol-

lowed by evolution of 2pC (|l3|IxSx + |l2|IySy + |l1|IzSz)
for another t1

2
units of time. This produces an effective

Hamiltonian 2pCt1ðjl2jþjl3j
2

ðIxSx þ IySyÞ þ jl1jI zSzÞ. To
reduce c, we evolve the Hamiltonian 2pC (|l2|IxSx �
|l1|IySy � |l3|IzSz) followed by 2pC (�|l1|IxSx + |l2|Iy-
C (�|l1|IxSx + |l2|IySy � |l3|IzSz) for t2

2
units of time

each. See Fig. 2D. This produces an effective Hamilto-
nian 2pCt2ðjl2j�jl1j

2
ðIxSx þ IySyÞ � jl3jIzSzÞ. Given t1 +

t2 = t, we can now substitute the value of a, b, and c
to find that cos (pCtc) sin (pCta) reduces to
cosðpCtcÞ sinðp

2
Ctðjl3j þ jl2j � jl1j þ cÞÞ. We can now

maximize this expression for |c| 6 |l3|. This is the maxi-
mum efficiency. As before nothing is gained by having
K1 and K2 other than identity transformation. The effi-
ciency of I�ffiffi

2
p !

ffiffiffi
2

p
I zS

� is the same.
4. Next, we consider the transfer
ffiffiffi
2

p
IxSa !

ffiffiffi
2

p
IaSx:

Consider the action of A (t) in Eq. (2) on the oper-
ator

ffiffiffi
2

p
IxSa. Let s denote the subspace spanned by

the orthonormal basis f
ffiffiffi
2

p
IaSx;

ffiffiffi
2

p
IaSy ;

ffiffiffi
2

p
IaSzg and

let Ps denote the projection onto this space. Then
we obtain

P sðAðtÞ
ffiffiffi
2

p
IxSa AyðtÞÞ ¼ sinðpCtaÞ þ sinðpCtbÞ

2
:

Note |Ps (A IxSa A�)| is all we need to maximize, as
then by a suitable local unitary K1, we can rotate this
projection onto IaSx. Maximizing the above expression
then gives a ¼ b ¼ jl3jþjl2j

2
. In practice we can achieve this

efficiency by evolving the Hamiltonian 2pC (|l3|IxSx +
|l2|IySy + |l1|IzSz) for t/2 amount of time followed by
the evolution of the Hamiltonian 2pC (|l2|Ix Sx + |l3|Iy-
Sy + |l1|IzSz) for time t/2. See Fig. 2E. Note, we have
in the above discussion taken K2 as identity transforma-
tion. In general if K2 is not zero, starting from the initial

operator IxSa, it will create
P

pqmpnqðIp2 þ IpSqÞ, whereP
pm

2
p ¼ 1 and

P
qn

2
q ¼ 1 and p,q 2 {x,y,z}. Since for

the term ðIp
2
þ IpSqÞ, the maximum transfer efficiency to

the subspace s is bounded by sinðp
2
Ctðjl2j þ jl3jÞÞ, the

total maximum efficiency is achieved for K2, an identity
transformation.

5. The maximal efficiency for the transfer

I�Sa ! IaS
�

is the same and can be derived as above.
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Reduction of multiplet complexity in COSY-type NMR spectra,
the bilinear and planar COSY experiment, Mol. Phys. 72 (1991)
847–871.

[13] E.H. Lieb, T. Schultz, D.C. Mattis, Antiferromagnetic chain,
Ann. Phys. 16 (1961) 407–466.

[14] N. Tjandra, A. Bax, Direct measurement of distances and angles
in biomolecules by NMR in a dilute liquid crystalline medium,
Science 278 (1997) 1111–1114.

[15] F. Kramer, S.J. Glaser, Efficiency of Homonuclear Hartmann–
Hahn and COSY-type mixing sequences in the presence of scalar
and residual dipolar couplings, J. Magn. Reson. 155 (2002) 83–91.

[16] M.R. Hansen, P. Hanson, A. Pardi, Filamentous bacteriophage
for aligning RNA, DNA, and proteins for measurement of
Nuclear Magnetic Resonance dipolar coupling interactions,
Methods Enzymol. 317 (2002) 220–240.

[17] T. Gullion, D.B. Baker, M.S. Conradi, New, compensated Carr–
Purcell sequences, J. Magn. Reson. 89 (1990) 479–484.
[18] M.J. Lizak, T. Gullion, M.S. Conradi, Measurement of like-
spin dipole couplings, J. Magn. Reson. 91 (1991) 254–
260.

[19] F. Kramer, W. Peti, C. Griesinger, S.J. Glaser, Optimized
homonuclear Carr–Purcell-type dipolar mixing sequences, J.
Magn. Reson. 149 (2001) 58–66.

[20] D.P. Weitekamp, J.R. Garbow, A. Pines, Determination of dipole
coupling constants using heteronuclear multiple quantum NMR,
J. Chem. Phys. 77 (1982) 2870–2883.

[21] P. Caravatti, L. Braunschweiler, R.R. Ernst, Heteronuclear
correlation spectroscopy in rotating solids, Chem. Phys. Lett.
100 (1983) 305–310.

[22] S.J. Glaser, J.J. Quant, Homonuclear and heteronuclear Hart-
mann–Hahn transfer in isotropic liquids, in: W.S. Warren (Ed.),
Advances in magnetic and optical resonance, 19, Academic Press,
San Diego, 1995, pp. 59–252.

[23] O.W. Sørensen, Polarization transfer experiments in high-resolu-
tion NMR spectroscopy, Prog. NMR Spectrosc. 21 (1989) 503–
569.

[24] T.S. Untidt, N.C. Nielsen, Analytical unitary bounds on quantum
dynamics: Design of optimum NMR experiments in two-spin-1/2
systems, J. Chem. Phys. 113 (2000) 8464–8471.

[25] N. Khaneja, T. Reiss, B. Luy, S.J. Glaser, Optimal control of spin
dynamics in the presence of relaxation, J. Magn. Reson. 162
(2003) 311–319.

[26] D. Stefanatos, N. Khaneja, S.J. Glaser, Optimal control of
coupled spins in presence of longitudinal relaxation, Phys. Rev. A
69 (2004) 022319.

[27] N. Khaneja, B. Luy, S.J. Glaser, Boundary of quantum evolution
in presence of decoherence, Proc. Natl. Acad. Sci. USA (2003)
13162–13166.


	Optimal experiments for maximizing coherence transfer  between coupled spins
	Introduction
	Theory
	Experimental
	Conclusion
	Appendix A
	References


